53,588 research outputs found

    Relic Vector Field and CMB Large Scale Anomalies

    Full text link
    We study the most general effects of relic vector fields on the inflationary background and density perturbations. Such effects are observable if the number of inflationary e-folds is close to the minimum requirement to solve the horizon problem. We show that this can potentially explain two CMB large scale anomalies: the quadrupole-octopole alignment and the quadrupole power suppression. We discuss its effect on the parity anomaly. We also provide analytical template for more detailed data comparison.Comment: 15 pages, v4, references added, some comments revised, JCAP versio

    Non-Bunch-Davies Anisotropy

    Full text link
    We introduce a generic mechanism that can extend the effects of relic anisotropies at the beginning of inflation to relatively much shorter scales in density perturbations. This is induced by non-Bunch-Davies states of the quantum fluctuations, and can show up in the non-oscillatory components of the density perturbations. This mechanism works for general forms of anisotropies, and, to illustrate it, we use an example of relic vector field. The detailed scale-dependence of these anisotropies can be used to probe the initial quantum state of our universe.Comment: 10 page

    Inflation with Holographic Dark Energy

    Full text link
    We investigate the corrections of the holographic dark energy to inflation paradigm. We study the evolution of the holographic dark energy in the inflationary universe in detail, and carry out a model-independent analysis on the holographic dark energy correction to the primordial scalar power spectrum. It turns out that the corrections generically make the spectrum redder. To be consistent with the experimental data, there must be a upper bound on the reheating temperature. We also discuss the corrections due to different choices of the infrared cutoff.Comment: 15 pages, 3 figures, v2: references added, a fast-roll discussion added. v3: typos corrected. v4: final version to appear in NP

    Performance of a Multiple-Access DCSK-CC System over Nakagami-mm Fading Channels

    Full text link
    In this paper, we propose a novel cooperative scheme to enhance the performance of multiple-access (MA) differential-chaos-shift-keying (DCSK) systems. We provide the bit-error-rate (BER) performance and throughput analyses for the new system with a decode-and-forward (DF) protocol over Nakagami-mm fading channels. Our simulated results not only show that this system significantly improves the BER performance as compared to the existing DCSK non-cooperative (DCSK-NC) system and the multiple-input multiple-output DCSK (MIMO-DCSK) system, but also verify the theoretical analyses. Furthermore, we show that the throughput of this system approximately equals that of the DCSK-NC system, both of which have prominent improvements over the MIMO-DCSK system. We thus believe that the proposed system can be a good framework for chaos-modulation-based wireless communications.Comment: 4 pages, 5 figures, accepted, IEEE ISCAS, 201

    Inflationary NonGaussianity from Thermal Fluctuations

    Full text link
    We calculate the contribution of the fluctuations with the thermal origin to the inflationary nonGaussianity. We find that even a small component of radiation can lead to a large nonGaussianity. We show that this thermal nonGaussianity always has positive fNLf_{\rm NL}. We illustrate our result in the chain inflation model and the very weakly dissipative warm inflation model. We show that fNL∼O(1)f_{NL}\sim {\cal O}(1) is general in such models. If we allow modified equation of state, or some decoupling effects, the large thermal nonGaussianity of order fNL>5f_{\rm NL}>5 or even fNL∼100f_{\rm NL}\sim 100 can be produced. We also show that the power spectrum of chain inflation should have a thermal origin. In the Appendix A, we made a clarification on the different conventions used in the literature related to the calculation of fNLf_{\rm NL}.Comment: 20 pages, 1 figure. v2, v3: references and acknowledgments update
    • …
    corecore